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The nonsteady heat exchange during the movement of power-law fluids in the initial 
thermal sections of a channel and a tube is studied. 

Non-Newtonian media are widely used at present in the chemical industry, oil and gas 
production, and other branches of industry. 

The problem of the nonisothermal movement of these media is of both theoretical and 
practical interest. It should be noted that processes of steady heat exchange are examined 
for the most part [1-3]. However, the problems of regulation and control of processes and 
apparatus which operate with high thermal loads are connected with the study of convective 
heat exchange in a nonsteady mode. Various cases, including variation in the wall tempera- 
ture with time, can give rise to a nonsteady mode. Therefore, the study of the effects of 
these variations on the heat exchange during the movement of different media is of practical 
interest in many engineering problems. 

This problem with the movement of a viscous fluid was formulated and solved in [4, 5]. 

The heat exchange in a steady laminar mode of movement of a power-law fluid in the 
thermal initial sections of a round cylindrical tube and a flat channel is examined in the 
present report. 

It is assumed that at the initial time the temperature field in the stream of medium 
is uniform, i.e., the temperature of the medium at entrance is equal to the wall tempera- 
ture, and, consequently, isothermal movement of the medium occurs. Starting with a certain 
time the wall temperature abruptly changes and assumes a new constant value T w. 

It should be noted that the solution for a single temperature jump can be generalized, 
as was shown in [6], to the case of arbitrary time variation in the wall temperature. 

In this case the following assumptions are made: the movement proceeds in the direc- 
tion of the z axis; internal heat sources are absent from the stream; the amount of heat 
released through energy dissipation is negligibly small; the medium is incompressible and 
its physicomechanical properties are constant. 

i. First let us consider the problem of heat exchange in a round tube. 

With allowance for what has been said above, the energy equation for a nonsteady temper- 
ature field has the form 

aT aT  1 a / a T \  

a T  + V~-az = a �9 ~ ~ . r ar --~r. (1) 

Through the introduction of the dimensionless variables 

r ~2R 2 at 
. . . .  ; T--T~ Pe - -  

T w - - T o  
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Eq. (i) is written in the form 

OFo +v, .aZ = p - "  Op p " . (2) 

To so lve  the problem we w i l l  use the approximate method of  boundary - laye r  theory  i n  con junc-  
t i o n  with the method of characteristics curves. As shown in [6], for the particular case 
of the given problem, i.e., when n = I (a viscous medium), the disagreement between the re- 
sults of a calculation of the heat exchange by the method presented above and the results 
obtained through direct numerical integration does not exceed 5%. In this case the stream 
in the tube can be divided into two regions: a thermal boundary layer of thickness ~, which 
depends on Fo, Z, and n, and a core in which the temperature is constant and equal to the 
temperature T O at the entrance, i.e., 9 = 0. By changing from the variable O to the vari- 
able Y = I -- p and integrating (2) over Y from 0 to ~, we obtain 

6 8 
00 

0Fo 
0 0 

The v e l o c i t y  d i s t r i b u t i o n  i n  d i m e n s i o n l e s s  fo rm has  t h e  a p p e a r a n c e  
: n+l 

- _ .  o~ 3n + 1 v, ---=-_ = ' ~ [ 1  -- (1  - - Y ) "  1.. (4) 
v n + l  

To solve Eq. (3) we assign the temperature distribution over the thickness of the boundary 
layer in the form of a polynomial: 

0 -= bo + blY + b2 Y~ + bs yS" 

Determining the coefficients from the boundarY conditions 

Fo>O. r=o.  o =  I ,  =o, 

Fo>0, Y=6  0 =0, a__oo =0,  
: ..... ~ .~ , OF 

we obtain as a result 

." ,  ' , . .  46-1- " 1 y ~  
1 + 6 y s  ~ 

1 .  (5) 

Substituting (4) and (5) into (3) and performing the integration, we have 

o i . 1 -  at:_ = 6 

aFo + az  82 + 46 ' 
(6) 

where 

0, , (5 703) 
J1 =6 2 6+  4 2 I0 20 ' 

3 n J r l  

3re_l- 1. {j1 _1 n___n (1 _ 6) n n 6 
n + l  3 n +  1 3 n + l ,  4 6 + 6 2  x 

3n z _ _  2n (38n a q- 12n + 1) 6 + 
• ( 3 n +  1)(4n+ 1)(5n+ l) -+ 3(4n .+ 1)(Sn+ 1)(6n+ 1) 

2n 3 1 + n (8n + 1) 62 
6 (5n qi 1.)(6n --p- 1) (4n -k 1)(5n + 1)(6n + 1) 5 

an+l 
__  2a~ I + 6 ] ( 1 _ _ 6 )  n ,--F- 

(3n + l)(4n + 1)(5n + 1)(6n + 1) 8 ~ ] 

6 r .~ (6n-+-ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2n' 
46-{-6 ~, [(3:n + l)-~-l~-5n + 1) (3n+ l)(4n+ l)(Sa-b l)(6n+ I) 
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Integrating (6) by the method of characteristics curves, we obtain 

Fo = f (6) 

where 

n 3 (4248n 4 + 4332n 3 + 1591n Z + 204n + 9) Z = 3n+.___~l [(6) + 
n + 1 3 (3n + 1)2(4n + l)~(5n + 1)~(6n + 1) 

-[ n 3 (4248n 4 + 4332n 3 + 1591n z + 204n + 9 
3 (3n + 1)2(4n + I)2(5n + 1)2(6n + 1) 

n 4 (144n + 30) 
3 (4n .~- 1)2(5n + 1)2(6n + 1) 

6 n  3 
- -  6 ~ 62 

6 (5n + 1)~(6n + 1) 

n 2 [8(6n 4- 1) ~ + 3n ~'1 
8 (3n + l)(4n + 1)(5n + 1)(6n + 1) 

n 4 

3 n +  1 

(1- -6)  n _ 

(3n + 1)(4n + 1)(5n + 1)(6n + 1) 

l n ! ( - ~  + 1 + 

(7) 

(8) 

13 + 7 16 - 1 o4+  2,o( ) 
(6) = - 1--g 30 36 8--0- T 5  . T  + ~ " 

6 2 n +  1 

~1(6)---- f [  lOn2--7n--2 _ _ 1  _ 2 ( 8 n + 3 )  1 6 ](l__5) nd6, 
. In  ~ 5 n 52 63 
0 

6, 2n-{-I 

%(6) = _ ;[142n-~- 63 + _ _  2(3n + 1) _ _  1 r ~2 ] (1- -5)  n , 
�9 n n 5 - r  5 - r 4  dS, 
0 

i [  6 4,5 8 ( 6 n + l ) ~ - - 3 n  2 t ]d6. 
% ( 6 ) = .  7 + 6 ~ -  8n ~ 6 

0 

Equations (7) and (8) are valid in the Z--Fo plane along the characteristic curves in one 
case when ~ depends only on Fo and in another case when ~ depends only on Z. The two equa- 
tions merge along the limiting characteristic curve which passes through the origin of co- 
ordinates and divides the Z--Fo plane into two regions. The region lying between the limit- 
ing characteristic curve and the Z axis corresponds to the nonsteady mode of heat exchange, 
while the region lying between the limiting characteristic curve and the Fo axis corresponds 
to the steady mode. Consequently, the time Fo s required for the attainment of a steady mode 
of heat exchange with any value of Z is determined by the equation of the limiting charac- 
teristic curve. The heat flux density at the wall is found from Eq. (5): 

q ~  _ 6 (9) 
(T~-- To) L 46 - -  62 

Calculations from Eqs. (7), (8), and (9) are presented in Figs. I, 2, 3, and 4 for a 
Newtonian liquid (n = i), a dilatant liquid (n > i), and a pseudoplastic liquid (n < i), 
and graphs are also presented for extreme pseudoplastic (n = 0) and extreme dilatant In = 
=) materials. All the quantities in the figures are given in dimensionless form. 

It is seen that with a decrease in the rheological parameter n the time required for 
the establishment of the temperature field and the heat flux at the wall decreases and with 
an increase in n it increases, with this time changing insignificantly when n > 3. 

The ahove is obviously connected with the fact that ever fuller velocity profiles occur 
for pseudoplastic media. 

The time of establishment of the temperature field and the heat flux at the wall for 
different n strongly depends on the length Z of the initial thermal section. Other condi- 
tions being equal, this dependence increases with an increase in Z. 

It should be noted that in the particular case when n = i (a viscous liquid) the re- 
suits fully coincide with the data obtained in [6]. 
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Fig. 1 Fig. 2 

Fig. I. Time of onset of the steady mode in the thermal ini- 

tial section of a round tube for different n upon a sudden 

change in the wall temperature. 

Fig. 2. Variation in the thickness of the boundary layer as a 

function of the time and length of the�9 section for dif- 
ferent n. 

0 

e > } ' o  . F I 

Fig; 3 Fig. 4 

Fig. 3. Variation in the thickness of the boundary layer as a 

function of the length of the initial section �9 for different n. 

Fig. 4. Variation in the heat flux density at the wall as a 

function of the time and the length of the initial thermal sec- 

tion for different n. 

Example i. Transformer oil (n = i, a = 2.04"10 -4 m=/h [6]) or polyethylene (n = 1/3, 

~S ~ 4.7.10 -4 m~/h [2, 3]) is flowing with Pe = 2000 in a tube with diameter d = 20 under 

isothermal conditions. At a certain time the wall temperature abruptly changes. To be 

determined: the time following the jump in which a steady state sets in at a distance z = 
40d from the entrance. In this case Z = (2/Pe)-(z/R) = 0.08. This value, as seen from 

Fig. i, corresponds �9 Fo s = 0.096 for transformer oil and Fo s = 0.085 for polyethylene, 

where Fo s = ats/R 2. 

Hence we find that for transformer oil the steady mode sets in after t s = 170 sec and 

for polyethylene after t s = 65 sec. 

Example 2. A viscous medium (n = i, a = 2"10 -4 m=/h) or a power-law medium with the 

parameters n = 1/3 or n = 3 (a = 2"10 -4 m=/h) is flowing with Pe = 2000 in a tube with diam- 
eter d = 20 mm under isothermal conditions. At a certain time the wall temperature abruptly 
changes. To be determined: the time following the jump in which a steady state sets in at 

a distance z = 40d from the entrance. In this case Z = 0.08. This value, as seen from Fig. 

i, corresponds to Fo s = 0.096 for the viscous medium, Fo s = 0.085 for n = 1/3, and Fo s = 
0.103 for n = 3, where Fo s = ats/R 2. Hence we find that t s = 173 sec for the viscous med- 

ium, t s = 151 sec for n = 1/3, and t s = 187 see for n = 3 �9 . 

2. The nonsteady heat exchange during the steady laminar movement of a power-law fluid 

in the thermal initial section of a flat channel is examined. 

The energy equation for a nonsteady temperature field in dimensionless form has the 

following appearance: 
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O0 2n + 1 ,,+l 06) 020 
- - + - - [ 1 - - ( I - - Y ) "  1 . . . .  
O Fo n + 1 OZ 6Y 2 ' 

(10)  
O---- T - - T 0 ,  Y =  Y ; Fo---- a t, Z - -  2 z, P e = v  2h . 

T c - -  T O h [h 2 h Pe a 

U s i n g  t h e  a p p r o x i m a t e  b o u n d a r y - l a y e r  m e t h o d  a p p l i e d  a b o v e  i n  c o n j u n c t i o n  w i t h  t h e  m e t h o d  
of characteristic curves, we obtain the following expression for the temperature field: 

Here the dependence of the thickness 6 of the thermal boundary layer on Z and Fo has the 
form 

! 

Fo = (86) ~ , 

2n-}-I 
Z - -  2 n :  1 { + 6 ~  , 2n 3 6 ( I _ 8 )  n 

n - -  1 ~- (5n ,--}- l)(6n + 1) 

2n.-k-1 
2n 3 (13n 3 + 28 n ~ - -  14n q- 2) n ] 

1)(5n§ 1) [(1 - - 6 )  - -  1 1 - - % ( 8 )  - - % ( 6 ) ] ,  (12)  
~ ~2n ~ 1)~(3n 1)2(4n -~ - 

(~ n~-~l 
2n 4 ~ [  3 3 ( n §  1 n 7n2--1 _ 1 ] (1 ~ ) n d 6 '  

% (6) (2n -6- 1)(3n = 1)(4n ~- 1)(5n -/- 1) 63 + 6 ~ n 2 
0 

6 

% (6) = (2n + 1)(3n + 1) 6 (4n + 1)(Sn + l) " "6~ d6. 
0 

(13) 

The heat flux density at the wall is found from Eq. (Ii): 

qc2h 3 

(T~ - -  To) ~ 6 

As is seen, the expressions obtained have no qualitative differences from the expressions 
obtained in the preceding section. Consequently, the conclusions drawn in Sec. i do not 
lose meaning for Sec. 2. 

NOTATION 

T, temperature of moving medium; To, temperature at entrance to tube; Tw, temperature 
of tube wall; Vz, steady velocity of medium; ~, averaged (over the cross section) velocity; 
V--z, dimensionless velocity; bo, bl, b2, b3, coefficients; 0, Z, dimensionless coordinates; 
t, time; R, tube radius; a, coefficient of thermal diffusivity; @, dimensionless tempera- 
ture; Pe and Fo, Peclet and Fourier numbers, respectively; n, exponent of nonlinearity of 
fluid; Y = i -- P, new dimensionless variable; 6, thermal boundary layer; qw, heat flux 
density at wall; 2h, distance between plates of channel; %, coefficient of thermal conduc- 
tivity; ts, time of onset of steady mode. 
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